
Wagtail Approval Documentation
Release 0.2.11

Taylor C. Richberger

Oct 05, 2017

Contents:

1 API 1
1.1 wagtailapproval.models . 1
1.2 wagtailapproval.approvalitem . 2
1.3 wagtailapproval.apps . 3
1.4 wagtailapproval.forms . 3
1.5 wagtailapproval.menu . 3
1.6 wagtailapproval.signals . 3
1.7 wagtailapproval.views . 6
1.8 wagtailapproval.wagtail_hooks . 6
1.9 wagtailapproval._signals . 6

2 Wagtail Approval 9

3 What is this? 11

4 Does it work out of the box? 13

5 What does not work? 15

6 How do I get started? 17

7 License 19

8 Indices and tables 21

Python Module Index 23

i

ii

CHAPTER 1

API

wagtailapproval.models

class ApprovalPipeline(*args, **kwargs)
Bases: wagtail.wagtailcore.models.Page

This page type is a very simple page that is only used to hold steps

class ApprovalStep(*args, **kwargs)
Bases: wagtail.wagtailcore.models.Page

Holds posts and facilitates the automatic moving to other steps in the same pipeline on approval and rejection.

approve(obj)
Run approval on an object

automatic_approval(obj)
Possibly runs processing on an object for automatic approval or rejection

base_form_class
alias of StepForm

clean()
Makes sure parents are the same

fix_permissions()
Set proper restrictions for the owned collection and all owned pages. Does not perform a save, so it can be
safely used in a post_save signal.

get_items(user)
Gets an iterator of approval items, for rendering in templates. In practice, this returns a generator. If you
need a stable view, use this to construct a list or tuple.

reject(obj)
Run rejection on an object

release_ownership(obj)
Release ownership of an object. This is idempotent.

1

Wagtail Approval Documentation, Release 0.2.11

set_collection_group_privacy(private)
Sets/unsets the collection group privacy

set_page_group_privacy(page, private)
Sets/unsets the page group privacy

take_ownership(obj)
Take ownership of an object. Should run all relevant processing on changing visibility and other such
things. This is idempotent.

transfer_ownership(obj, step)
Give ownership to another step

class ApprovalTicket(*args, **kwargs)
Bases: django.db.models.base.Model

A special junction table to reference an arbitrary item by uuid.

This is used to create an arbitrary approval/rejection URL, as it would be very difficult to do otherwise (as an
approval step can own arbitrary pages and collection members with conflicting PKs otherwise). UUID is done
for a minor security gain (prevent people from being able to try to act on arbitrary PKs, though that will be
prevented through user privileges anyway, and the UUID should only be used for approvals and rejections, not
GETs), as well as making the URL more opaque.

wagtailapproval.approvalitem

class ApprovalItem(title, view_url, edit_url, delete_url, obj, step, typename, uuid)
An Approval menu item, used for building the munu list, including links and all. Objects of this type should be
added through the build_approval_item_list signal.

Parameters

• title (str) – The title as displayed in the list

• view_url (str) – The URL to view the item.

• edit_url (str) – The URL to edit the item.

• delete_url (str) – The URL to delete the item.

• obj – The item itself.

• step (ApprovalStep) – The step for this item.

• typename (str) – The type name of the item.

• uuid (uuid.UUID) – The UUID for this item, the pk for ApprovalTicket

delete_url

edit_url

obj

step

title

typename

uuid

view_url

2 Chapter 1. API

Wagtail Approval Documentation, Release 0.2.11

get_user_approval_items(user)
Get an iterable of all items pending for a user’s approval.

Parameters user (User) – A user object whose groups are to be checked for appropriate steps

Return type Iterable[ApprovalItem]

Returns All the items that this user can approve or reject.

wagtailapproval.apps

class WagtailApprovalConfig(app_name, app_module)
Bases: django.apps.config.AppConfig

Simply imports signals

name = ‘wagtailapproval’

ready()

wagtailapproval.forms

class StepForm(*args, **kwargs)
Bases: wagtail.wagtailadmin.forms.WagtailAdminPageForm

This is used to filter the approval and rejection steps so that only siblings may show. Proper validation on saving
is performed in the Step model itself.

base_fields = OrderedDict()

declared_fields = OrderedDict()

media

wagtailapproval.menu

class ApprovalMenuItem(label=u’Approval’, url=u’/admin/approval/’, classnames=’icon icon-tick-
inverse’, order=200, **kwargs)

Bases: wagtail.wagtailadmin.menu.MenuItem

The menu item that shows in the wagtail sidebar

is_shown(request)
Only show the menu if the user is in an owned approval group

media

wagtailapproval.signals

This is all the signals supported by wagtailapproval. Examples of most of the important ones can be found directly in
wagtailapproval._signals.

Signals are documented here as the functions that catch them. sender, signal, and **kwargs are ommitted
for brevity. Some signals expect return values and may misbehave if the signal handlers don’t return what they are
expected to.

1.3. wagtailapproval.apps 3

Wagtail Approval Documentation, Release 0.2.11

step_published(instance)
Sent when a step is published.

Parameters instance (ApprovalStep) – The instance that was published

pipeline_published(instance)
Sent when a pipeline is published.

Parameters instance (ApprovalPipeline) – The instance that was published

build_approval_item_list(approval_step, user)
Used when building the approval items. Should return an iterable of ApprovalItem instances. You may return
any iterable, meaning generators are also acceptable.

Parameters

• approval_step (ApprovalStep) – The step to grab items from

• user (User) – The user to grab items for

Return type Iterable[ApprovalItem]

Returns An iterable of ApprovalItem instances

remove_approval_items(approval_items, user)
Can be used to implement custom filtering. Should return an iterable of ApprovalItem instances that the user
doesn’t want shown. The instances don’t have to exactly match, but may support equality. It is preferable that
you use the same object, though, as an is comparison is faster.

Parameters

• approval_items (tuple[ApprovalItem]) – The full list of approval items

• user (User) – The user to filter items for

Return type Iterable[ApprovalItem]

Returns An iterable of ApprovalItem instances

set_collection_edit(approval_step, edit)
Can be used to customize collection editing permissions. Use the edit kwarg, not the step’s can_edit field,
because they might not match.

Parameters

• approval_step (ApprovalStep) – The step to modify collection permissions for

• edit (bool) – whether editing is to be enabled or disabled

take_ownership(approval_step, object, pipeline)
Used for taking ownership by specific type. Do not work with ApprovalTicket here, as it’s done automatically
after this signal is called. This is done for permissions management.

Parameters

• approval_step (ApprovalStep) – The step to give the object to.

• object – The object to give to the step

• pipeline (ApprovalPipeline) – The pipeline for the ApprovalStep

release_ownership(approval_step, object, pipeline)
Used for releasing ownership by specific type. Do not work with ApprovalTicket here, as it’s done automatically
after this signal is called. This is used for permissions management.

Parameters

4 Chapter 1. API

Wagtail Approval Documentation, Release 0.2.11

• approval_step (ApprovalStep) – The step to give the object to.

• object – The object to give to the step

• pipeline (ApprovalPipeline) – The pipeline for the ApprovalStep

pre_transfer_ownership(giving_step, taking_step, object, pipeline)
Sent before transferring ownership. This is done after pre_approve() or pre_reject(). This can be
used for validation.

Parameters

• giving_step (ApprovalStep) – The step who will be releasing the object

• taking_step (ApprovalStep) – The step who will be taking the object

• object – The object to be transferred.

• pipeline (ApprovalPipeline) – The pipeline for the steps

post_transfer_ownership(giving_step, taking_step, object, pipeline)
Sent after transferring ownership. This is done before post_approve() or post_reject(). This should
be used if you want to do something after each transfer.

Parameters

• giving_step (ApprovalStep) – The step that has released the object

• taking_step (ApprovalStep) – The step that has taken the object

• object – The object that has been transferred

• pipeline (ApprovalPipeline) – The pipeline for the steps

pre_approve(giving_step, taking_step, object, pipeline)
Sent before approval. This is done before pre_transfer_ownership(). This can be used for validation.
If approve is run on an object that has no approval step, this will not be executed.

Parameters

• giving_step (ApprovalStep) – The step who will be releasing the object

• taking_step (ApprovalStep) – The step who will be taking the object

• object – The object to be transferred.

• pipeline (ApprovalPipeline) – The pipeline for the steps

post_approve(giving_step, taking_step, object, pipeline)
Sent after approval. This is done after post_transfer_ownership(). This should be used if you want
to do something after each transfer (such as if taking_step is a step that is meant to perform some sort of
automatic validation or automatic approval/rejection). If approve is run on an object that has no approval step,
this will not be executed.

Parameters

• giving_step (ApprovalStep) – The step that has released the object

• taking_step (ApprovalStep) – The step that has taken the object

• object – The object that has been transferred

• pipeline (ApprovalPipeline) – The pipeline for the steps

pre_reject(giving_step, taking_step, object, pipeline)
Sent before rejection. This is done before pre_transfer_ownership(). This can be used for validation.
If approve is run on an object that has no rejection step, this will not be executed.

1.6. wagtailapproval.signals 5

Wagtail Approval Documentation, Release 0.2.11

Parameters

• giving_step (ApprovalStep) – The step who will be releasing the object

• taking_step (ApprovalStep) – The step who will be taking the object

• object – The object to be transferred.

• pipeline (ApprovalPipeline) – The pipeline for the steps

post_reject(giving_step, taking_step, object, pipeline)
Sent after rejection. This is done after post_transfer_ownership(). This should be used if you want
to do something after each transfer (such as if taking_step is a step that is meant to perform some sort of
automatic validation or automatic approval/rejection). If approve is run on an object that has no rejection step,
this will not be executed.

Parameters

• giving_step (ApprovalStep) – The step that has released the object

• taking_step (ApprovalStep) – The step that has taken the object

• object – The object that has been transferred

• pipeline (ApprovalPipeline) – The pipeline for the steps

wagtailapproval.views

approve(request, pk)

check_permissions(function)

index(request)
Get all pending approvals that are relevant for the current user

reject(request, pk)

wagtailapproval.wagtail_hooks

register_admin_menu_item()

register_admin_urls()

take_ownership_if_necessary(request, page)
Checks the request user and takes ownership of the page if it is created by an owned user

wagtailapproval._signals

These are the signals used for internal behavior. Some of these are great places to start if you’re looking at adding your
own types to your pipeline.

add_document(sender, approval_step, **kwargs)
Builds the approval item list for documents

add_images(sender, approval_step, **kwargs)
Builds the approval item list for images

6 Chapter 1. API

Wagtail Approval Documentation, Release 0.2.11

add_pages(sender, approval_step, **kwargs)
Builds the approval item list for pages

approvalticket_cascade_delete(sender, instance, **kwargs)
This deletes objects from ApprovalTicket if they are deleted, to avoid leaking space (a deleted object would
otherwise never be freed from the ticket database, as cascades don’t work for GenericForeignKey without
a GenericRelation). Essentially, this is a custom cascade delete.

assert_page_live(sender, giving_step, taking_step, object, pipeline, **kwargs)

catch_collection_objects(sender, instance, created, **kwargs)
If newly-created objects are created inside of a collection that is owned by an ApprovalStep, it will automatically
take ownership of those objects

delete_owned_group_and_collection(sender, instance, **kwargs)
This deletes the owned group and collection from ApprovalStep when the step is deleted.

delete_owned_user(sender, instance, **kwargs)
This deletes the owned user from ApprovalPipeline when the pipeline is deleted.

fix_restrictions(sender, instance, **kwargs)
Update ApprovalStep restrictions on a save.

release_page_permissions(sender, approval_step, object, pipeline, **kwargs)

send_published_signals(sender, instance, **kwargs)
This simply watches for a published step or pipeline, and sends a pipeline_published() or
step_published() signal for it.

set_document_collection_edit(sender, approval_step, edit, **kwargs)
Sets collection permissions for documents

set_image_collection_edit(sender, approval_step, edit, **kwargs)
Sets collection permissions for images

setup_group_and_collection(sender, instance, **kwargs)
Create or rename the step’s owned groups and collections

setup_pipeline_user(sender, instance, **kwargs)
Setup an ApprovalPipeline user

update_collection_ownership(sender, approval_step, object, pipeline, **kwargs)
Individual take_ownerships for each type should be implemented that also take the collection member. This is a
fallback in case something doesn’t work the way it should

update_document_ownership(sender, approval_step, object, pipeline, **kwargs)

update_image_ownership(sender, approval_step, object, pipeline, **kwargs)

update_page_ownership(sender, approval_step, object, pipeline, **kwargs)

1.9. wagtailapproval._signals 7

Wagtail Approval Documentation, Release 0.2.11

8 Chapter 1. API

CHAPTER 2

Wagtail Approval

This is a wagtail plugin for approval pipelines.

9

Wagtail Approval Documentation, Release 0.2.11

10 Chapter 2. Wagtail Approval

CHAPTER 3

What is this?

Essentially, this is a plugin for defining and enforcing flows of approval and editing. You can set up arbitrary “steps”
in the flow, each step owning a group (and all the users which belong to the group). When a user creates a relevant
object, their step will catch it and take ownership of it. When a user’s step owns an object, that user can then approve
or reject objects as relevant. Steps can be made to make all of their owned objects private, so that items can be kept
in an unpublished state until they are fully edited and approved (note that “Published” takes a different meaning here
than Wagtail’s own). What this does as far as pages are concerned could be replicated by creating a “creation” page
that is private and allowing approval and editing users to move pages into specific areas, but that is messy and prone
to failure. This takes that process, avoids all the moving pieces, and puts the whole thing on rails.

11

Wagtail Approval Documentation, Release 0.2.11

12 Chapter 3. What is this?

CHAPTER 4

Does it work out of the box?

Wagtail Approval works out of the box for base wagtail (more specifically, it works for Images, Documents, and
Pages). It can be extended to support any other collectable type you wish, as long as that type properly implements
permissions for their collections (ie, respects the add, change, and delete permissions and also properly imple-
ments view restrictions)

13

Wagtail Approval Documentation, Release 0.2.11

14 Chapter 4. Does it work out of the box?

CHAPTER 5

What does not work?

Wagtail Images are not made private when they are in their collection. This is an issue in Wagtail, and comes about
because wagtail does not actually serve images. Images are instead served directly out of the Django media path.

15

Wagtail Approval Documentation, Release 0.2.11

16 Chapter 5. What does not work?

CHAPTER 6

How do I get started?

You can get started with the following steps:

1. Create an ApprovalPipeline page.

2. Create a set of ApprovalStep pages inside the pipeline.

3. Link the steps together (after they are created and published) by their approval and rejection fields.

4. Create users and assign them to the groups created by the steps.

5. Give the groups that should have creation permissions the relevant perms for their types and pages that they
should be able to create in.

6. Publish an object as a content creation user.

There should be no subclassing necessary. Appropriate extension should be doable entirely through signals. If you
can’t extend this in the way you need to through signals, it’s probably a bug in this plugin.

17

Wagtail Approval Documentation, Release 0.2.11

18 Chapter 6. How do I get started?

CHAPTER 7

License

This project is licensed under the 2-clause BSD license, copyrighted by Absolute Performance, Inc. See the LICENSE
document for more information.

Portions of code are copied from the wagtailnews project, and thus the wagtailnews attribution requirements are carried
as well by this project:

Copyright (c) 2014, Tim Heap

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

19

https://github.com/takeflight/wagtailnews

Wagtail Approval Documentation, Release 0.2.11

20 Chapter 7. License

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

21

Wagtail Approval Documentation, Release 0.2.11

22 Chapter 8. Indices and tables

Python Module Index

w
wagtailapproval._signals, 6
wagtailapproval.approvalitem, 2
wagtailapproval.apps, 3
wagtailapproval.forms, 3
wagtailapproval.menu, 3
wagtailapproval.models, 1
wagtailapproval.views, 6
wagtailapproval.wagtail_hooks, 6

23

Wagtail Approval Documentation, Release 0.2.11

24 Python Module Index

Index

A
add_document() (in module wagtailapproval._signals), 6
add_images() (in module wagtailapproval._signals), 6
add_pages() (in module wagtailapproval._signals), 6
ApprovalItem (class in wagtailapproval.approvalitem), 2
ApprovalMenuItem (class in wagtailapproval.menu), 3
ApprovalPipeline (class in wagtailapproval.models), 1
ApprovalStep (class in wagtailapproval.models), 1
ApprovalTicket (class in wagtailapproval.models), 2
approvalticket_cascade_delete() (in module wagtailap-

proval._signals), 7
approve() (ApprovalStep method), 1
approve() (in module wagtailapproval.views), 6
assert_page_live() (in module wagtailapproval._signals),

7
automatic_approval() (ApprovalStep method), 1

B
base_fields (StepForm attribute), 3
base_form_class (ApprovalStep attribute), 1
build_approval_item_list() (built-in function), 4

C
catch_collection_objects() (in module wagtailap-

proval._signals), 7
check_permissions() (in module wagtailapproval.views),

6
clean() (ApprovalStep method), 1

D
declared_fields (StepForm attribute), 3
delete_owned_group_and_collection() (in module wag-

tailapproval._signals), 7
delete_owned_user() (in module wagtailap-

proval._signals), 7
delete_url (ApprovalItem attribute), 2

E
edit_url (ApprovalItem attribute), 2

F
fix_permissions() (ApprovalStep method), 1
fix_restrictions() (in module wagtailapproval._signals), 7

G
get_items() (ApprovalStep method), 1
get_user_approval_items() (in module wagtailap-

proval.approvalitem), 2

I
index() (in module wagtailapproval.views), 6
is_shown() (ApprovalMenuItem method), 3

M
media (ApprovalMenuItem attribute), 3
media (StepForm attribute), 3

N
name (WagtailApprovalConfig attribute), 3

O
obj (ApprovalItem attribute), 2

P
pipeline_published() (built-in function), 4
post_approve() (built-in function), 5
post_reject() (built-in function), 6
post_transfer_ownership() (built-in function), 5
pre_approve() (built-in function), 5
pre_reject() (built-in function), 5
pre_transfer_ownership() (built-in function), 5

R
ready() (WagtailApprovalConfig method), 3
register_admin_menu_item() (in module wagtailap-

proval.wagtail_hooks), 6
register_admin_urls() (in module wagtailap-

proval.wagtail_hooks), 6

25

Wagtail Approval Documentation, Release 0.2.11

reject() (ApprovalStep method), 1
reject() (in module wagtailapproval.views), 6
release_ownership() (ApprovalStep method), 1
release_ownership() (built-in function), 4
release_page_permissions() (in module wagtailap-

proval._signals), 7
remove_approval_items() (built-in function), 4

S
send_published_signals() (in module wagtailap-

proval._signals), 7
set_collection_edit() (built-in function), 4
set_collection_group_privacy() (ApprovalStep method),

1
set_document_collection_edit() (in module wagtailap-

proval._signals), 7
set_image_collection_edit() (in module wagtailap-

proval._signals), 7
set_page_group_privacy() (ApprovalStep method), 2
setup_group_and_collection() (in module wagtailap-

proval._signals), 7
setup_pipeline_user() (in module wagtailap-

proval._signals), 7
step (ApprovalItem attribute), 2
step_published() (built-in function), 3
StepForm (class in wagtailapproval.forms), 3

T
take_ownership() (ApprovalStep method), 2
take_ownership() (built-in function), 4
take_ownership_if_necessary() (in module wagtailap-

proval.wagtail_hooks), 6
title (ApprovalItem attribute), 2
transfer_ownership() (ApprovalStep method), 2
typename (ApprovalItem attribute), 2

U
update_collection_ownership() (in module wagtailap-

proval._signals), 7
update_document_ownership() (in module wagtailap-

proval._signals), 7
update_image_ownership() (in module wagtailap-

proval._signals), 7
update_page_ownership() (in module wagtailap-

proval._signals), 7
uuid (ApprovalItem attribute), 2

V
view_url (ApprovalItem attribute), 2

W
wagtailapproval._signals (module), 6
wagtailapproval.approvalitem (module), 2

wagtailapproval.apps (module), 3
wagtailapproval.forms (module), 3
wagtailapproval.menu (module), 3
wagtailapproval.models (module), 1
wagtailapproval.views (module), 6
wagtailapproval.wagtail_hooks (module), 6
WagtailApprovalConfig (class in wagtailapproval.apps), 3

26 Index

	API
	wagtailapproval.models
	wagtailapproval.approvalitem
	wagtailapproval.apps
	wagtailapproval.forms
	wagtailapproval.menu
	wagtailapproval.signals
	wagtailapproval.views
	wagtailapproval.wagtail_hooks
	wagtailapproval._signals

	Wagtail Approval
	What is this?
	Does it work out of the box?
	What does not work?
	How do I get started?
	License
	Indices and tables
	Python Module Index

